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Abstract. 
This paper investigates the capabilities of a new sensor for in-process monitoring of quality during friction welding. The 

non-contact sensor is composed of microphones that are mounted in an aluminum ring which surrounds the weld joint. The 
sensor collects the acoustical energy (in the form of sound pressure) that is emitted during the plastic deformation and phase 
transformations (if applicable) in friction welding processes. 

The focus in this preliminary investigation is to search for and identify features within the acoustical emission that are 
indicative of bond quality. Bar-to-bar inertia friction welding (one form of friction welding) of copper to 304L stainless steel 
is used in this proof-of-concept study. This material combination exhibits only marginal weldability and is ideally suited for 
validating the capabilities of this new sensing technique. 

A probabilistic neural network is employed in this work to analyze the acoustical emission’s frequency spectrum in an attempt 
to classify acceptable, conditional, and unacceptable welds. Our preliminary findings indicate that quality-based process features 
do exist within the frequency spectrum of the acoustical signature. The results from this analysis are presented. Future work 
in improving the sensing and interpretation of the data is discussed in an effort to develop a robust method of quality-based, 
in-process monitoring of friction welds. 

INTRODUCTION 

Traditionally, critical inertia-friction welded joints tend to be dif­
ficult to inspect for two reasons: (1) non-destructive evaluation 
techniques only detect gross disbonds leaving more subtle dis­
continuities which could have a significant effect on fatigue life 
or joint fracture toughness; and (2) destructive post-process in­
spection is time-consuming and costly for highly man-rated ap­
plications. 

Although improvements in post-process, nondestructive tests 
have been realized in R&D laboratory environments [1], no 
reliable method is available for detecting in-situ weld quality 
in a production environment. For commercial applications, weld 
parameter development and post-process inspection efforts can 
result in up to a 200%-time (and cost) overhead in the overall 
manufacturing process with little value added [2]. Therefore, 
manufacturers interested in reducing costs and increasing quality 
should consider an in-process means of determining part quality. 

A vein of noteworthy research into in-process quality detec­
tion of friction welds has been pursued by Wang and Oh. In 
[3], Wang, et al. demonstrated the feasibility of using acoustical 
emission (AE) as an in-process quality metric for inertia friction 
welding (IFRW) of ferrous metals. The authors were able to cor­
relate AE counts to joint strength for bar-to-bar (AISI 4140 to 
1117 and 12L14) and tube-to-tube (AISI 1020 to 304SS) welds. 
AE sensing was accomplished with a piezoelectric transducer at­
tached directly to either the stationary chuck or the workpiece. 

For mild steels, the authors found two distinctive regions of AE: 
one during the welding process (A-zone) and the other during 
the cool-down portion of the weld cycle (B-zone). The first burst 
of AE activity is due primarily to the plastic deformation of the 
material during the weld, whereas the second burst of AE ac­
tivity is suspected to be a result of martensitic transformation. 
The authors showed relatively good correlation between the cu­
mulative B-zone AE counts and the tensile breaking force (i.e., 
strength) for ferrous metals. However, their non-ferrous (alu­
minum and copper) metal experiments resulted in no detectable 
B-zone AE activities, and hence they were unable to determine 
weld strength. 

Oh, et al. [4, 5] extended the data analysis portion of the 
experimental work conducted by Wang, et al. [3]. The authors 
used the total cumulative AE counts (i.e., A-zone counts + B­
zone counts) as an in-process quality metric. In particular, they 
were able to correlate weld strength with (1) total cumulative 
AE counts and initial energy, (2) total cumulative AE counts 
and total upset, and (3) total cumulative AE counts and welding 
time (for continuous drive friction welding). The authors were 
able to empirically derive an equation for tensile strength that 
can be used for in-process monitoring and control of friction 
weld strength. In [6], Oh, et al. correlated weld strength to IFRW 
welding parameters (rotational speed, pressure, and inertia) and 
total cumulative AE counts. Oh, et al. presented their final report 
[7] that correlates Zone-A AE counts and weld strength. 

The current industry approach to ensuring quality in IFRW 



FIGURE 1. Pattern classification system. 

relies upon maintaining absolute upset within a predetermined 
±3σ envelope and applies this quality metric post-process. Pre­
vious work by Hartman, et al. [8] demonstrated that this tech­
nique is capable of detecting faulty welds when machine param­
eters varied slightly from their nominal. However, other defect 
conditions, such as, surface contamination and misalignment, 
were not detectable by monitoring absolute upset. 

An investigation into the feasibility of using a new, non­
contact acoustical sensing technique is presented. In particular, 
the AE data from this sensor will be analyzed using a neural net­
work pattern classification system in order to determine if infor­
mation exists within the data that can be correlated to bond qual­
ity. The Pattern Recognition Section provides an overview of and 
the method used for building a pattern recognition system. The 
next two sections (Experimental Approach and Results and Dis­
cussion) discuss the methods used and the results achieved for 
this exploratory work. Finally, a Conclusions and Future Work 
Section summarizes our findings and presents several research 
directions in which to extend this work. 

PATTERN RECOGNITION 

Duda and Hart [9] define pattern recognition as the “machine 
recognition of meaningful regularities in noisy or complex envi­
ronments”. Bezdek [10] provides the following definition: “pat­
tern recognition is the search for structure in data.” The goal in 
this research is to identify features within the acoustical signa­
ture of an inertia-friction weld that quantifies its bond quality. At 
this stage of the research, we are only interested in identifying 
the difference between acceptable and unacceptable bond qual­
ity. This type of categorical identification is commonly referred 
to as pattern classification. 

Pattern classification is only one of several forms of pattern 
recognition. Other commonly applied pattern recognition tech­
niques include estimation, prediction, and control. The develop­

ment of a successful pattern classification system1 for this re­
search involved iteratively revisiting the three modules shown in 
Figure 1 until the system (1) satisfied a given set of performance 
requirements and economic constraints or (2) failed to yield any 
acceptable results2. The arrows in Figure 1 represent modifica­
tions to a module which results in re-evaluating the classifier’s 
performance. 

The process description for this research was captured with 
machine process data (speed, pressure, and upset) and acousti­
cal energy. In [8], Hartman, et al. demonstrated the ability to 
detect and classify various defective conditions in similar ma­
terial, tubular inertia-friction welds using only machine process 
data. The dissimilar welds produced in this research are an order 
of magnitude more difficult to weld, and it was therefore deter­
mined that an in-process monitoring technique would need ad­
ditional sensing mechanisms. The work performed by Wang and 
Oh encouraged the authors to pursue a similar sensing method. 

Defining the process description, by determining what combi­
nation of sensing data would yield classifiable features, was one 
aspect of the iterative nature of this pattern classification effort. 
Once the process description is determined, the next step is fea­
ture analysis. Feature analysis represents techniques that explore 
and improve upon “raw” data. Two methods of feature analy­
sis that were used in this research were preprocessing (scaling, 
smoothing, interpolating, and normalizing) and extracting (dis­
crete Fourier transform and spectrogram). Therefore, the second 
iterative nature of this effort was determining the most effective 
feature analysis method(s). 

Classifier design represents the third module of this pattern 
classification system and the ultimate goal: to find a partition 
within the process description data that yields a computationally 

1 The method presented in this paper is modified from a methodology presented

by Bezdek in [11].

2 The authors were uncertain if the acoustical energy collected by a ring of mi­

crophones would yield any process specific information that could be correlated

to quality.




explicit (e.g., discriminant functions, nearest prototype rules) 
or implicit (e.g., multilayered Perceptrons, k-nearest neighbor 
rules) decision function. A supervised classifier design using a 
PNN was chosen because of its successful application in [8]. 
The smoothing parameter, σ , is the only parameter affecting the 
performance of a basic PNN and, therefore, represents the third 
iterative aspect of this classification problem. 

EXPERIMENT AL APPROACH 

An experimental matrix was devised that could provide a rela­
tively straight-forward method of evaluating the merits of this 
new sensing technique. Therefore, the goal for the experimental 
matrix was to generate two types of welds: acceptable and un­
acceptable. An acceptable weld is defined as one in which the 
majority of the interfacing surfaces are bonded. An unacceptable 
weld is defined as one in which no or little bonding at the sur­
faces exists. The rest of this section will detail each component 
of the experimental approach. 

Materials and Preparation 

Throughout this study oxygen-free, high-conductivity 
(OFHC) copper bar nominally 1-inch diameter and annealed 
Type 304L stainless steel bar nominally 0.5-inch diameter 
were used. OFHC copper is essentially 99.99 percent pure, 
while 304L is a low carbon grade of austenitic stainless steel. 
About three weeks before welding each specimen was given a 
preliminary machining step to ensure a faying surface finish of 
32 µin. 

Welding Procedure 

All welding was conducted using an MTI Model 90B inertia 
friction welding system. Initial parameter selection was based 
upon work by Bell et al. [18] but altered slightly to accommodate 
differences in available inertial mass. The welding parameters 
remained constant throughout this investigation and are listed in 
Table 1. Selected copper specimens were machined immediately 
before welding while bathed in isopropyl alcohol. Others were 
welded as-is, i.e., without further machining to remove surface 
oxidation that might have occurred while at ambient temperature 
and pressure for up to five weeks prior to welding. In all cases, 
the stainless steel was rotated during the weld cycle while the 
copper remained fixed. Lastly, the specimens extended from the 
spindle and fixture collets by approximately one diameter. 

Acoustical Sensing and Data Collection 

A non-contact array of microphones which surround the weld 
joint was used to collect the rapid release of energy (sound 
pressure) due to the mechanical, thermal, and metallurgical 
phenomenon occurring during friction welding. The acoustical 
transducers used in this research are off-the-shelf electret con­
denser microphones. 

The non-contact sensing ring accurately measures sound pres­
sures at audio frequencies in the air. Up to twelve (12) micro­
phones can be held in the aluminum ring. Figure 2 illustrates our 

TABLE 1. Welding parameters. 

Parameter Setting 

Inertial mass 1.52 lbf · f t
2 

Rotational speed 4500 r pm 
Surface velocity∗ 589 sf pm 
Axial force 7100 lbf 
Weld pressure† 1092 psi 
Weld energy‡ 5241 f t · lbf 
Prebond gap 0.100 in 
Dwell time 3 sec 
Average upset 0.150 in 
∗ For 0.5 inch diameter bar 
† Ram area = 4.9 in2 

‡ Energy = (wk2 × r pm2)/5873 

FIGURE 2. Acoustic ring assembly with four (4) microphones. 

experimental setup in which four microphones are evenly placed 
around the ring. 

The acoustical data was sampled at 40 kHz per channel. Cal­
ibration of the microphones was accomplished by comparing it 
to a calibrated Brüel & Kjær condenser microphone, type 4133, 
within the frequency sensitivity range of the sensor’s micro­
phones. 

Micr ostructural Characterization 

Standard metallographic procedures were used to prepare se­
lected specimens to a 1 µm finish. Microstructural features were 
revealed by using a double etching procedure comprising a 5% 
ammonium persulphate etch for the OFHC copper followed by 
an electrolytic 10% oxalic acid etch for the stainless steel. Light 
microscopy up to 100X magnification revealed salient features 
of the bond interface and surrounding heat and deformation zone 
(HDZ). 



TABLE 2. Variables that were modified during the de­
velopment of the pattern recognition system. 

Possible
Module Variable Values 

1 

Process Description microphones 1 & 3

2 & 4


1, 2, 3, & 4


Feature Analysis window position 0 – 120,000 

1024

2048


Feature Analysis FFT size 4096

8192


16384


Mechanical Testing 
A semi-quantitative evaluation of each joint was performed 

using unguided bend testing. As-welded, full-size specimens 
were tested. Image analysis techniques were used to determine 
the percent of bonded area after fracturing each specimen. 

Classifying Bond Quality 
A probabilistic neural network3 (PNN) was used as the clas­

sifier for this work. A PNN’s unique architecture and training 
method provide the following benefits: 

•	 A PNN can begin classifying after having just one training 
pattern from each category. 

• A PNN is orders of magnitude faster to train than a tradi­
tional backpropagation neural network. 

•	 A PNN can be shown to asymptotically approach Bayes’ 
optimal decision surface without the possibility of getting 
stuck in local minima. 

•	 A PNN architecture is conducive to enabling a human to 
understand how the network works. 

A PNN is therefore ideal for exploring data sets in which the 
structure is ill-defined and that contain both deterministic and 
random signals. 

A series of neural network trainings and trials was performed 
in an effort to search for features that could be used to correlate 
the AE data to bond quality. As described earlier in the Pattern 
Recognition Section and illustrated in Figure 1, any modifica­
tions to either the process description, feature analysis, or clas­
sifier design resulted in re-running the system and evaluating its 
performance. The variables listed in Table 2 were modified dur­
ing the iterative development of the pattern recognition system. 

Three different classifications were investigated: (1) accept­
able and unacceptable, (2) acceptable and conditional, and (3) 
acceptable, conditional, and unacceptable. A moving window 
discrete Fourier transform (DFT) was performed on the AE data 
using the fast Fourier transform (FFT) algorithm. A step size of 

3 For more information on the architecture and implementation of a PNN see 
[12, 13]. 

250 data points was used to move through the time-domain data 
(120,000 samples ⇔ 3 seconds at 40 kHz) without overlap. 

Each segment of the time-domain data was filtered using a 
Hanning Window and then transformed into the frequency do­
main. Finally, the transformed data was then normalized prior to 
including it in the training patterns for the PNN. For multiple mi­
crophones, the normalized and transformed data was appended 
to the other microphone’s transforms before including it in the 
training patterns. 

Each window increment within the signal resulted in a com­
plete training and testing of the PNN’s ability to classify bond 
quality. Training consisted of (1) removing one pattern from the 
training data, (2) training the PNN, and (3) testing the PNN with 
the removed pattern. This was repeated for each pattern within 
the set. The PNN’s accuracy in classifying bond quality was then 
determined by summing the total number of correct classifica­
tions and dividing by the total number of training patterns. 

The result of this training and testing phase will yield a clas­
sification accuracy vs. time plot. This plot will identify the loca­
tion of features within the acoustical signature that can be used 
to infer bond quality. Once this is determined, future work can 
improve upon the process description, feature analysis, and clas­
sifier design in an effort to build a robust, in-process monitoring 
system for inertia friction welding and, potentially, for other fric­
tion welding processes. 

RESULTS AND DISCUSSION 

Although the experimental matrix was designed with only one 
variable in mind (surface preparation of the copper), three differ­
ent quality welds were generated: 

• Acceptable: bonded area is approximately 100%. 
•	 Conditional: bonded area is less than 100% but greater than 

5%. 
• Unacceptable: bonded area is less than 5%. 

The conditional welds were prepared in the same manner as the 
acceptable welds (see Table 3) which demonstrates the difficult 
nature of joining these two materials. 

Visual Examination 

After welding, each specimen was visually inspected for uni­
formity and color of weld flash. Figure 3 illustrates a typical flash 
and fracture surface for each category of weld. All specimens 
exhibited a symmetric flash with a light golden color. Moreover, 
the amount of upset (or reduction in length [RIL]) was approx­
imately equal and predominately occurred in the copper. More­
over, the fact that the RIL’s were approximately equal, yet ac­
ceptable, conditional, and unacceptable welds resulted, suggests 
that RIL alone is an insufficient measure of bond quality (see 
Table 3). 

Micr ostructural Observations 

Specimens that were machined immediately before welding 
exhibited a copper-side HDZ that was uniform across the diame­
ter – as expected. This type of HDZ shape indicates that the part’s 



FIGURE 3. Typical weld flash and fracture surfaces for acceptable, conditional and unacceptable welds. 

speed was at least sufficient to ensure center heating. Specimens 
that were welded as-is had a HDZ shape that was narrowest at 
the center indicating insufficient heat generation not from lack 
of speed since all parameters remained constant, but rather due 
to insufficient oxide removal during the upset/forging phase. The 
microstructural features observed on each side of the joint inter­
face were as expected given the large difference in yield strength 
between the copper and stainless steel. At high magnification, 
the interface of a typical as-welded specimen exhibited no ap­
parent discontinuities or lack of bonding. However, the refined 
grain size on the copper side of the interface is readily distin­
guishable from the stainless steel where a very narrow band (ap­
proximately 5 µm) of deformation appears immediately adjacent 
to the interface. 

Mechanical Properties 

Qualitative bond area from unguided bend test results are sum­
marized in Table 3 and illustrated in Figure 3. Because the actual 
force required for failure was not measured, the test results are 
semi-quantitative at best. Nonetheless, sufficient information ex­
ists to render a determination of acceptable bond quality based 
on fracture surface morphology and percent of interface area 
bonded. Image analysis of the fracture surfaces provided a rea­
sonable approximation of the percent of interface area bonded 
for specimens exhibiting less than 100% bonding. Specimens 
having acceptable bond quality exhibited ductile tearing through 

TABLE 3. Bend test results. 

Weld Surface Condition Bond Bonded 
Number Before Welding Quality Area (%) 

1 - 12 Freshly Machined Acceptable 100.0 
13 Freshly Machined Conditional 80.0 
14 Freshly Machined Conditional 70.0 
15 Freshly Machined Conditional 69.0 
16 Freshly Machined Conditional 67.0 
17 Freshly Machined Conditional 54.0 
18 Freshly Machined Conditional 26.0 

19 - 23 Not Machined Unacceptable 0.0 

the copper without any lack of bonding (see Figure 3). However, 
all of the specimens that were welded as-is, i.e., not freshly ma­
chined, exhibited a lack of bonding over the majority of the in­
terface. Generally, the as-welded specimens exhibited little to no 
ductile features on the fracture surfaces. Lastly, there are those 
specimens that exhibited conditional bond quality and are order 
ranked between acceptable and unacceptable (see Table 3). 

Classification 
Figure 4 illustrates the most promising results from this ex­

ploratory study. It was found that four microphones yielded im­
proved accuracy over one microphone and was comparable to or 
better than two microphones. The results, however, were not as 
conclusive in terms of FFT size. 



FIGURE 4. Classification accuracy as a function of time (compared with a typical speed and acoustical waveform). 



Acceptable and unacceptable bond quality can be reliably de­
tected under most parameter combinations that were investi­
gated. Interestingly, the differences in the Cu’s surface prepa­
ration was manifested in the acoustical signature at the end of 
the weld rather than at the beginning. 

Acceptable and conditional bond quality was detected but fur­
ther work needs to be performed to verify and enhance this re­
sult. The features for distinguishing between an acceptable and 
conditional bond appear at a different location within the acous­
tical signature than they do for an acceptable and unacceptable 
bond. In particular, conditional bond quality is detected at ap­
proximately 1.3 seconds after contact is made between the faying 
surfaces. 

The classification system was unsuccessful at finding three 
partitions within the data space that could accurately identify and 
discriminate between the three different bond quality classes. It 
is possible that the classifier’s inability to discriminate between 
all three classes is due to an insufficient number of training 
vectors. Furthermore, additional feature analysis techniques and 
improved learning algorithms might rectify this shortcoming. 

CONCLUSIONS AND FUTURE WORK 

A bond quality classification system was developed using a 
novel, non-contact, acoustical emission sensing technique that: 

•	 Identifies features within the acoustical signature of an 
inertia friction weld that are indicative of the process’s 
ability to produce a quality bond. 

•	 Provides a real-time response with minimal hardware re­
quirements. 

• Tolerates noisy and ill-defined data. 

Future work includes the following: 

•	 Compare and contrast the non-contact sensing capabilities 
of this sensor with a piezoelectric transducer that was used 
by Wang, et al. [3]. 

•	 Generate a larger experimental matrix to include contam­
ination conditions (e.g., fingerprints) to freshly machined 
surfaces. 

•	 Determine the directional characteristics of the sensing 
ring. 

•	 Investigate other feature extraction methods, such as, 
wavelets and spectograms. 

•	 Analyze the data with other neural network techniques, 
such as, an adaptive probabilistic neural network. 
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